Unit 9 Adding and Subtracting Like Fractions

1. Like fractions have the same denominator. $\frac{1}{5}$ and $\frac{3}{5}$ are like fractions.
2. Addition
A. Add numerators.
B. Denominator does not change.

You have six candy bar halves.
How many candy bars do you have?

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2} \\
& =\frac{1+1+1+1+1+1}{2} \\
& =\frac{6}{2}=3 \text { candy bars }
\end{aligned}
$$

Reminder: The line between the numerator and the denominator is a division symbol. $6 \div 2=3$

You have two quarters. What part of a dollar do you have?

$$
\frac{1}{4}+\frac{1}{4}=\frac{1+1}{4}=\frac{2}{4}
$$

2 quarters may be reduced (simplified to its lowest denominator)

$$
\frac{2+2}{4+2}=\frac{1}{2} \text { dollar }
$$

Reducing fractions to their lowest denominator requires dividing both numerator and denominator by the largest whole number that will divide into each exactly.

3. Subtraction

A. Subtract numerators.
B. Denominator does not change.

You gave 2 of your 6 candy bar halves to a friend. How many do you have left?

$$
\frac{6}{2}-\frac{2}{2}=\frac{6-2}{2}=\frac{4}{2}
$$

Reduce 4 halves

$$
\frac{4 \div 2}{2 \div 2}=\frac{2}{1}=2 \text { candy bars }
$$

Note: Multiplying or dividing the numerator and denominator of a fraction by the same number does not change its value.

You spent 2 dimes ($\frac{2}{10}$ of a dollar) of your $\frac{1}{2}$ dollar on a pencil. Find your change. Convert a half-dollar to its equivalent tenths and subtract.

$$
\begin{aligned}
& \frac{1}{2}-\frac{2}{10} \\
\qquad & \frac{1}{2}=\frac{1 \times 5}{2 \times 5}=\frac{5}{10} \\
= & \frac{5}{10}-\frac{2}{10} \\
= & \frac{3}{10} \text { of a dollar }
\end{aligned}
$$

Note: Always reduce final answers to lowest terms.

